A Catechism of the Steam Engine by John Bourne
page 104 of 494 (21%)
page 104 of 494 (21%)
![]() | ![]() |
|
|
180. _Q._--Then by computing the varying pressure at a number of stages, the average or mean pressure throughout the stroke may be approximately determined? [Illustration: Fig. 32. Diagram showing law of expansion of steam in a cylinder.] _A._--Precisely so. Thus in the accompanying figure, (fig. 32), let E be a cylinder, J the piston, _a_ the steam pipe, _c_ the upper port, _f_ the lower port, _d_ the steam pipe, prolonged to _e_ the equilibrium valve, _g_ the eduction valve, M the steam jacket, N the cylinder cover, O stuffing box, _n_ piston rod, P cylinder bottom; let the cylinder be supposed to be divided in the direction of its length into any number of equal parts, say twenty, and let the diameter of the cylinder represent the pressure of the steam, which, for the sake of simplicity, we may take at 10 lbs., so that we may divide the cylinder, in the direction of its diameter, into ten equal parts. If now the piston be supposed to descend through five of the divisions, and the steam valve then be shut, the pressure at each subsequent position of the piston will be represented by a series, computed according to the laws of pneumatics, and which, if the initial pressure be represented by 1, will give a pressure of .5 at the middle of the stroke, and .25 at the end of it. If this series be set off on the horizontal lines, it will mark out a hyperbolic curve--the area of the part exterior to which represents the total efficacy of the stroke, and the interior area, therefore, represents the diminution in the power of a stroke, when the steam is cut off at one- fourth of the descent. If the squares above the point, where the steam is cut off, be counted, they will be found to amount to 50; and if those |
|


