Kepler by Walter W. Bryant
page 36 of 58 (62%)
page 36 of 58 (62%)
![]() | ![]() |
|
encouraged to revive another of his speculations as to a force which was
weaker at greater distances. He found the velocity greater at the nearer apse, so that the time over an equal arc at either apse was proportional to the distance. He conjectured that this might prove to be true for arcs at all parts of the orbit, and to test this he divided the orbit into 360 equal parts, and calculated the distances to the points of division. Archimedes had obtained an approximation to the area of a circle by dividing it radially into a very large number of triangles, and Kepler had this device in mind. He found that the sums of successive distances from his 360 points were approximately proportional to the times from point to point, and was thus enabled to represent much more accurately the annual motion of the earth which produced the second inequality of Mars, to whose motion he now returned. Three points are sufficient to define a circle, so he took three observed positions of Mars and found a circle; he then took three other positions, but obtained a different circle, and a third set gave yet another. It thus began to appear that the orbit could not be a circle. He next tried to divide into 360 equal parts, as he had in the case of the earth, but the sums of distances failed to fit the times, and he realised that the sums of distances were not a good measure of the area of successive triangles. He noted, however, that the errors at the apses were now smaller than with a central circular orbit, and of the opposite sign, so he determined to try whether an oval orbit would fit better, following a suggestion made by Purbach in the case of Mercury, whose orbit is even more eccentric than that of Mars, though observations were too scanty to form the foundation of any theory. Kepler gave his fancy play in the choice of an oval, greater at one end than the other, endeavouring to satisfy some ideas about epicyclic motion, but could not find a satisfactory curve. He then had the fortunate idea of trying an ellipse with the same axis as his tentative oval. Mars now appeared too slow at |
|