Six Lectures on Light - Delivered In The United States In 1872-1873 by John Tyndall
page 81 of 237 (34%)
page 81 of 237 (34%)
![]() | ![]() |
|
|
second slit. We have now to consider the action of the various parts
of the wave A P upon a point R' of the retina, not situated in the line joining the two slits. [Illustration: Fig. 19.] Let us take the particular case in which the difference of path from the two marginal points A, P, to the retina is a whole wave-length of the red light; how must this difference affect the final illumination of the retina? Let us fix our attention upon the particular oblique line that passes through the _centre_ O of the slit to the retina at R'. The difference of path between the waves which pass along this line and those from the two margins is, in the case here supposed, half a wavelength. Make _e_ R' equal to P R', join P and _e_, and draw O _d_ parallel to P e. A e is then the length of a wave of light, while A _d_ is half a wave-length. Now the least reflection will make it clear that not only is there discordance between the central and marginal waves, but that every line of waves such as _x_ R', on the one side of O R', finds a line _x_' R' upon the other side of O R', from which its path differs by half an undulation--with which, therefore, it is in complete discordance. The consequence is, that the light on the one side of the central line will completely abolish the light on the other side of that line, absolute darkness being the result of their coalescence. The first dark interval of our series of bands is thus accounted for. It is produced by an obliquity of direction which causes the paths of the marginal waves to be _a whole wave-length_ different from each other. |
|


