Six Lectures on Light - Delivered In The United States In 1872-1873 by John Tyndall
page 92 of 237 (38%)
page 92 of 237 (38%)
![]() | ![]() |
|
|
structural arrangement, your inevitable answer will be, that those
crystals are built by the play of polar forces with which their molecules are endowed. In virtue of these forces, molecule lays itself to molecule in a perfectly definite way, the final visible form of the crystal depending upon this play of its ultimate particles. Everywhere in Nature we observe this tendency to run into definite forms, and nothing is easier than to give scope to this tendency by artificial arrangements. Dissolve nitre in water, and allow the water slowly to evaporate; the nitre remains and the solution soon becomes so concentrated that the liquid condition can no longer be preserved. The nitre-molecules approach each other, and come at length within the range of their polar forces. They arrange themselves in obedience to these forces, a minute crystal of nitre being at first produced. On this crystal the molecules continue to deposit themselves from the surrounding liquid. The crystal grows, and finally we have large prisms of nitre, each of a perfectly definite shape. Alum crystallizes with the utmost ease in this fashion. The resultant crystal is, however, different in shape from that of nitre, because the poles of the molecules are differently disposed. When they are _nursed_ with proper care, crystals of these substances may be caused to grow to a great size. The condition of perfect crystallization is, that the crystallizing force shall act with deliberation. There should be no hurry in its operations; but every molecule ought to be permitted, without disturbance from its neighbours, to exercise its own rights. If the crystallization be too sudden, the regularity disappears. Water may be saturated with sulphate of soda, dissolved when the water is hot, and afterwards permitted to cool. When cold the solution is |
|


