The Whence and the Whither of Man - A Brief History of His Origin and Development through Conformity to Environment; Being the Morse Lectures of 1895 by John Mason Tyler
page 53 of 331 (16%)
page 53 of 331 (16%)
![]() | ![]() |
|
|
place; and the fertilized egg develops into a new organism. But the
other cells, which have been all the time nourishing these, seem now to lack nutriment, strength, or vitality to give rise to a new colony. They die. We find thus in volvox division of labor and corresponding difference of structure or differentiation; certain cells retain the power of fusing with other corresponding cells, and thus of rejuvenescence and of giving rise to a new organism. And these cells, forming a series through all generations, are evidently immortal like the protozoa. Natural death cannot touch them. These are the reproductive cells. The other cells nourish and transport them and carry on the work of excretion and respiration. These latter correspond practically to our whole body. We call them somatic cells. In volvox they are entirely subservient to, and exist for, the reproductive cells, and die when they have completed their service of these. The body is here only a vehicle for ova. Furthermore, in volvox there has arisen such an interdependence of cells that we can no longer speak of it as a colony. The colony has become an individual by division of labor and the resulting differentiation in structure. But hydra gives us but a poor idea of the coelenterata, to which kingdom it belongs. The higher coelenterata have nearly or quite all the tissues of higher animals--muscular, connective, glandular, etc. And by tissues we mean groups of cells modified in form and structure for the performance of a special work or function. The protozoa developed the cell for all time to come, the coelenterata developed the tissues which still compose our bodies. But they had them mainly in a diffuse form. A sort of digestive and reproductive |
|


