The New Physics and Its Evolution by Lucien Poincare
page 59 of 282 (20%)
page 59 of 282 (20%)
![]() | ![]() |
|
circumstances the weight is no longer the same after as before the
reaction. In particular, the weight of a solution of salts of copper in water is not the exact sum of the joint weights of the salt and the water. Such experiments are evidently very delicate; they have been disputed, and they cannot be considered as sufficient for conviction. It follows nevertheless that it is no longer forbidden to regard the law of Lavoisier as only an approximate law; according to Sandford and Ray, this approximation would be about 1/2,400,000. This is also the result reached by Professor Poynting in experiments regarding the possible action of temperature on the weight of a body; and if this be really so, we may reassure ourselves, and from the point of view of practical application may continue to look upon matter as indestructible. The principles of physics, by imposing certain conditions on phenomena, limit after a fashion the field of the possible. Among these principles is one which, notwithstanding its importance when compared with that of universally known principles, is less familiar to some people. This is the principle of symmetry, more or less conscious applications of which can, no doubt, be found in various works and even in the conceptions of Copernican astronomers, but which was generalized and clearly enunciated for the first time by the late M. Curie. This illustrious physicist pointed out the advantage of introducing into the study of physical phenomena the considerations on symmetry familiar to crystallographers; for a phenomenon to take place, it is necessary that a certain dissymmetry should previously exist in the medium in which this phenomenon occurs. A body, for instance, may be animated with a certain linear velocity or a speed of rotation; it may be compressed, or twisted; it may be placed in an electric or in a magnetic field; it may be affected by an electric |
|