The New Physics and Its Evolution by Lucien Poincare
page 77 of 282 (27%)
page 77 of 282 (27%)
![]() | ![]() |
|
magnitude, since it is, in principle at least, measurable. Various
authors of thermodynamical researches, amongst whom M. Mouret should be particularly mentioned, have endeavoured to place this characteristic in evidence. Consider an isothermal transformation. Instead of leaving the heat abandoned by the body subjected to the transformation--water condensing in a state of saturated vapour, for instance--to pass directly into an ice calorimeter, we can transmit this heat to the calorimeter by the intermediary of a reversible Carnot engine. The engine having absorbed this quantity of heat, will only give back to the ice a lesser quantity of heat; and the weight of the melted ice, inferior to that which might have been directly given back, will serve as a measure of the isothermal transformation thus effected. It can be easily shown that this measure is independent of the apparatus used. It consequently becomes a numerical element characteristic of the body considered, and is called its entropy. Entropy, thus defined, is a variable which, like pressure or volume, might serve concurrently with another variable, such as pressure or volume, to define the state of a body. It must be perfectly understood that this variable can change in an independent manner, and that it is, for instance, distinct from the change of temperature. It is also distinct from the change which consists in losses or gains of heat. In chemical reactions, for example, the entropy increases without the substances borrowing any heat. When a perfect gas dilates in a vacuum its entropy increases, and yet the temperature does not change, and the gas has neither been able to give nor receive heat. We thus come to conceive that a physical phenomenon cannot be considered known to us if the variation |
|