Nitro-Explosives: A Practical Treatise by P. Gerald Sanford
page 35 of 352 (09%)
page 35 of 352 (09%)
![]() | ![]() |
|
|
the permanganate solution; then add 2 c.c. of the acid to be tested, and
shake gently, and continue to add permanganate solution as long as it is decolourised, and until a faint pink colour is permanent. _Example._ N/10 permanganate 3.16 grms. per litre, 1 c.c. = O.0046 grm. N_{2}O_{4}, 2 c.c. of sample of acid specific gravity 1.52 = 3.04 grms. taken for analysis. Took 20 c.c. permanganate solution, O.0046 x 20 =.092 grm. N_{2}O_{4}, and (.092 x 100)/3.04 = 3.02 per cent. N_{2}O_{4}. The specific gravity should be taken with an hydrometer that gives the specific gravity directly, or, if preferred, the 2 c.c. of acid may be weighed. A very good method of rapidly determining the strength of the sulphuric acid is as follows:--Weigh out in a small weighing bottle, as nearly as possible, 2.45 grms. This is best done by running in 1.33 c.c. of the acid (1.33 x 1.84 = 2.447). Wash into a large Erlenmeyer flask, carefully washing out the bottle, and also the stopper, &c. Add a drop of phenol- phthalein solution and titrate, with a half normal solution of sodium hydrate (use a 100 c.c. burette). Then if 2.45 grms. exactly have been taken, the readings on the burette will equal percentages of H_{2}SO_{4} (mono-hydrate) if not, calculate thus:--2.444 grms. weighed, required 95.4 c.c. NaOH. Then-- 2.444 : 95.4 :: 2.45 : _x_ = 95.64 per cent. H_{2}SO_{4}. It has been proposed to free nitric acid from the oxides of nitrogen by blowing compressed air through it, and thus driving the gases in solution out. The acid was contained in a closed lead tank, from which the escaping fumes were conducted into the chimney shaft, and on the bottom of which was a lead pipe, bent in the form of a circle, and pierced with holes, |
|


