Amusements in Mathematics by Henry Ernest Dudeney
page 346 of 735 (47%)
page 346 of 735 (47%)
![]() | ![]() |
|
then if we always keep in touch with the hedge with the right hand (or
always touch it with the left), going down to the stop in every blind alley and coming back on the other side, we shall pass through every part of the maze and make our exit where we went in. Therefore we must at one time or another enter the centre, and every alley will be traversed twice. [Illustration: FIG. 20.--M. Tremaux's Method of Solution.] [Illustration: FIG. 21.--How to thread the Hatfield Maze.] Now look at the Hampton Court plan. Follow, say to the right, the path indicated by the dotted line, and what I have said is clearly correct if we obliterate the two detached parts, or "islands," situated on each side of the star. But as these islands are there, you cannot by this method traverse every part of the maze; and if it had been so planned that the "centre" was, like the star, between the two islands, you would never pass through the "centre" at all. A glance at the Hatfield maze will show that there are three of these detached hedges or islands at the centre, so this method will never take you to the "centre" of that one. But the rule will at least always bring you safely out again unless you blunder in the following way. Suppose, when you were going in the direction of the arrow in the Hampton Court Maze, that you could not distinctly see the turning at the bottom, that you imagined you were in a blind alley and, to save time, crossed at once to the opposite hedge, then you would go round and round that U-shaped island with your right hand still always on the hedge--for ever after! [Illustration: FIG. 22. The Philadelphia Maze, and its Solution.] |
|