Some Mooted Questions in Reinforced Concrete Design - American Society of Civil Engineers, Transactions, Paper - No. 1169, Volume LXX, Dec. 1910 by Edward Godfrey
page 19 of 176 (10%)
page 19 of 176 (10%)
![]() | ![]() |
|
|
matter of deflections. Of those tested, two beams which were identical,
showed results almost 100% apart. A theory grounded on such a shifting foundation does not deserve serious consideration. Professor Lanza's conclusions, quoted under the twelfth point, have special meaning and force when applied to a reinforced concrete arch; the actual distribution of the stresses cannot possibly be determined, and complex cloaks of arithmetic cannot cover this fact. The elastic theory, far from being a reliable formula, is false and misleading in the extreme. The fourteenth point refers to temperature calculations in a reinforced concrete arch. These calculations have no meaning whatever. To give the grounds for this assertion would be to reiterate much of what has been said under the subject of the elastic arch. If the unstressed shape of an arch cannot be determined because of the unknown effect of shrinkage and settlement, it is a waste of time to work out a slightly different unstressed shape due to temperature variation, and it is a further waste of time to work out the supposed stresses resulting from deflecting that arch back to its actual shape. If no other method of finding the approximate stresses in an arch existed, the elastic theory might be classed as the best available; but this is not the case. There is a method which is both simple and reliable. Accuracy is not claimed for it, and hence it is in accord with the more or less uncertain materials dealt with. Complete safety, however, is assured, for it treats the arch as a series of blocks, and the cementing of these blocks into one mass cannot weaken the arch. Reinforcement can be proportioned in the same manner as for chimneys, by finding the tension exerted to pull these blocks apart and then providing steel to take that tension. |
|


