Some Mooted Questions in Reinforced Concrete Design - American Society of Civil Engineers, Transactions, Paper - No. 1169, Volume LXX, Dec. 1910 by Edward Godfrey
page 35 of 176 (19%)
page 35 of 176 (19%)
![]() | ![]() |
|
|
very expensive and difficult to install, but would also be a decided
step backward in mechanics. This proposition recalls the trusses used before the introduction of the Fink truss, in which the load from the upper chord was transmitted by separate members directly to the abutments, the inventor probably going on the principle that the shortest way is the best. There are in the United States many hundreds of rectangular water tanks. Are these held by any such devices? And as they are not thus held, and inasmuch as there is no doubt that they must carry the stress when filled with water, it is clear that, as long as the rods from the sides are strong enough to carry the tension and are bent with a liberal radius into the front wall and extended far enough to form a good anchorage, the connection will not be broken. The same applies to retaining walls. It would take up too much time to prove that the counterfort acts really as a beam, although the forces acting on it are not as easily found as those in a common beam. The writer does not quite understand the author's reference to shear rods. Possibly he means the longitudinal reinforcement, which it seems is sometimes calculated to carry 10,000 lb. per sq. in. in shear. The writer never heard of such a practice. In regard to stirrups, Mr. Godfrey seems to be in doubt. They certainly do not act as the rivets of a plate girder, nor as the vertical rods of a Howe truss. They are best compared with the dowel pins and bolts of a compound wooden beam. The writer has seen tests made on compound concrete beams separated by copper plates and connected only by stirrups, and the strength of the combination was nearly the same as that of beams made in one piece. Stirrups do not add much to the strength of the beams where bent bars |
|


