Outlines of the Earth's History - A Popular Study in Physiography by Nathaniel Southgate Shaler
page 257 of 476 (53%)
page 257 of 476 (53%)
![]() | ![]() |
|
|
made by even pressing snow, innumerable similar adhesions grow up in
the manner described. The fact is that, given ice at the temperature at which it ordinarily forms, pressure upon it will necessarily develop melting. The consequences of pressure melting as above described are in glaciers extremely complicated. Because the ice is built into the glacier at a temperature considerably below the freezing point, it requires a great thickness of the mass before the superincumbent weight is sufficient to bring about melting in its lower parts. If we knew the height at which a thermometer would have stood in the surface ice of the ancient glacier which covered the northern part of North America, we could with some accuracy compute how thick it must have been before the effect of pressure alone would have brought about melting; but even then we should have to reckon the temperature derived from the grinding of the ice over the floor and the crushing of rocks there effected, as well as the heat which is constantly though slowly coming forth from the earth's interior. The result is that we can only say that at some depth, probably less than a mile, the slowly accumulating ice would acquire such a temperature that, subjected to the weight above it, the material next the bottom would become molten, or at least converted into a sludgelike state, in which it could not rub against the bottom, or move stones in the manner of ordinary glaciers. As fast as the ice assumed this liquid or softened state, it would be squeezed out toward the region where, because of the thinning of the glacier, it would enter a field where pressure melting did not occur. It would then resume the solid state, and thence journey to the margin of the ice in the ordinary manner. We thus can imagine how such a |
|


