Outlines of the Earth's History - A Popular Study in Physiography by Nathaniel Southgate Shaler
page 324 of 476 (68%)
page 324 of 476 (68%)
![]() | ![]() |
|
|
see their explosions disturbing the surface of the waters is very
interesting, but not as yet clearly explicable. It is possible, however, that a volcanic discharge taking place at the depth of several thousand feet below the surface of the water would not be able to blow the fluid aside so as to open a pipe to the surface, but would expend its energy in a hidden manner near the ocean floor. The vapours would have to expand gradually, as they do in passing up through the rock pipe of a volcano, and in their slow upward passage might be absorbed by the water. The solid materials thrown forth would in this case necessarily fall close about the vent, and create a very steep cone, such, indeed, as we find indicated by the soundings off certain volcanic islands which appear only recently to have overtopped the level of the waters. As will be seen, though inadequately from the diagrams of Vesuvius, volcanic cones have a regularity and symmetry of form far exceeding that afforded by the outlines of any other of the earth's features. Where, as is generally the case, the shape of the cone is determined by the distribution of the falling cinders or divided lava which constitutes the mass of most cones, the slope is in general that known as a catenary curve--i.e., the line formed by a chain hanging between two points at some distance from the vertical. It is interesting to note that this graceful outline is a reflection or consequence of the curve described by the uprushing vapour. The expansion in the ascending column causes it to enlarge at a somewhat steadfast rate, while the speed of the ascent is ever diminishing. Precisely the same action can be seen in the like rush of steam and other gases and vapours from the cannon's mouth; only in the case of the gun, even of the greatest size, we can not trace the movement for more than a few hundred feet. In this column of ejection the outward movement from the |
|


