Book-bot.com - read famous books online for free

The Elements of Geology by William Harmon Norton
page 102 of 414 (24%)
Before this height is reached its surface becomes large enough to
discharge by evaporation into the dry air the amount of water that
is supplied by streams. As such a lake has no outlet, the minerals
in solution brought into it by its streams cannot escape from the
basin. The lake water becomes more and more heavily charged with
such substances as common salt and the sulphates and carbonates of
lime, of soda, and of potash, and these are thrown down from
solution one after another as the point of saturation for each
mineral is reached. Carbonate of lime, the least soluble and often
the most abundant mineral brought in, is the first to be
precipitated. As concentration goes on, gypsum, which is insoluble
in a strong brine, is deposited, and afterwards common salt. As
the saltness of the lake varies with the seasons and with climatic
changes, gypsum and salt are laid in alternate beds and are
interleaved with sedimentary clays spread from the waste brought
in by streams at times of flood. Few forms of life can live in
bodies of salt water so concentrated that chemical deposits take
place, and hence the beds of salt, gypsum, and silt of such lakes
are quite barren of the remains of life. Similar deposits are
precipitated by the concentration of sea water in lagoons and arms
of the sea cut off from the ocean.

LAKES BONNEVILLE AND LAHONTAN. These names are given to extinct
lakes which once occupied large areas in the Great Basin, the
former in Utah, the latter in northwestern Nevada. Their records
remain in old horizontal beach lines which they drew along their
mountainous shores at the different levels at which they stood,
and in the deposits of their beds. At its highest stage Lake
Bonneville, then one thousand feet deep, overflowed to the north
and was a fresh-water lake. As it shrank below the outlet it
DigitalOcean Referral Badge