The Elements of Geology by William Harmon Norton
page 55 of 414 (13%)
page 55 of 414 (13%)
![]() | ![]() |
|
thermal springs is derived from uncooled lavas, perhaps not far
below the surface. But when hot springs occur at a distance of hundreds of miles from any volcano, as in the case of the hot springs of Bath, England, it is probable that their waters have risen from the heated rocks of the earth's interior. The springs of Bath have a temperature of 120 degrees F., 70 degrees above the average annual temperature of the place. If we assume that the rate of increase in the earth's internal heat is here the average rate, 1 degree F. to every sixty feet of descent, we may conclude that the springs of Bath rise from at least a depth of forty-two hundred feet. Water may descend to depths from which it can never be brought back by hydrostatic pressure. It is absorbed by highly heated rocks deep below the surface. From time to time some of this deep- seated water may be returned to open air in the steam of volcanic eruptions. SURFACE DEPOSITS OF SPRINGS. Where subterranean water returns to the surface highly charged with minerals in solution, on exposure to the air it is commonly compelled to lay down much of its invisible load in chemical deposits about the spring. These are thrown down from solution either because of cooling, evaporation, the loss of carbon dioxide, or the work of algae. Many springs have been charged under pressure with carbon dioxide from subterranean sources and are able therefore to take up large quantities of lime carbonate from the limestone rocks through which they pass. On reaching the surface the pressure is relieved, the gas escapes, and the lime carbonate is thrown down in deposits |
|