Dry-Farming : a System of Agriculture for Countries under a Low Rainfall by John Andreas Widtsoe
page 48 of 276 (17%)
page 48 of 276 (17%)
![]() | ![]() |
|
|
Partial Percentage Composition Source of soil Humid Arid Number of samples analyzed 696 573 Insoluble residue 84.17 69.16 Soluble silica 4.04 6.71 Alumina 3.66 7.61 Lime 0.13 1.43 Potash 0.21 0.67 Phos. Acid 0.12 0.16 Humus 1.22 1.13 Soil chemists have generally attempted to arrive at a determination of the fertility of soil by treating a carefully selected and prepared sample with a certain amount of acid of definite strength. The portion which dissolves under the influence of acids has been looked upon as a rough measure of the possible fertility of the soil. The column headed "Insoluble Residue" shows the average proportions of arid and humid soils which remain undissolved by acids. It is evident at once that the humid soils are much less soluble in acids than arid soils, the difference being 84 to 69. Since the only plant-food in soils that may be used for plant production is that which is soluble, it follows that it is safe to assume that arid soils are generally more fertile than humid soils. This is borne out by a study of the constituents of the soil. For instance, potash, one of the essential plant foods ordinarily present in sufficient |
|


