Man or Matter by Ernst Lehrs
page 304 of 488 (62%)
page 304 of 488 (62%)
![]() | ![]() |
|
is itself a bipolar force. Thus, despite its apparent relation to
gravity it does not represent, as gravity does, one pole of a primary polarity, with heat as the other pole. Rather must it carry certain qualities of levity which, together with those of gravity, appear in a polarically opposite manner at its two poles. (Details of this will be shown later when we come to investigate the individual qualities of the two poles of magnetism and electricity.) Hence the heat that forms the counterpart to magnetism cannot be pure levity either. As the result of a certain coupling with gravity, it too has somehow remained polarically split. This can easily be seen by considering the following. Unlike the levity-gravity polarity, in which one pole is peripheral and the other point-centred, both Doles of the electrical polarity are point-centred; both are located in physical space, and thereby determine a definite direction within this space. It is this direction which remains a characteristic of both the magnetic and the thermal fields. The direction of the thermal field as much as that of the magnetic is determined by its having as its axis the conductor joining the poles of the antecedent electrical field. Both fields supplement each other in that the thermal radiation forms the radii which belong to the circular magnetic lines-of-force surrounding the conductor.3 Our picture of the process which is commonly called an electric current is now sufficiently complete to allow us to make a positive statement concerning the direction in which it takes place. Let us once more sum up: In order that this process may occur, there must be present in an electrically excited part of space a body which does not suffer the particular polarization of space bound up with such a field. As a result, the electrical field disappears, and in place of it appear a |
|