Marvels of Modern Science by Paul Severing
page 101 of 157 (64%)
page 101 of 157 (64%)
![]() | ![]() |
|
|
The extension of the shell back from the diaphragm is for the purpose
of affording opportunity to put in place the finished tunnel lining whatever it may be, masonry, cast-iron, cast-iron and masonry, or steel plates and masonry. Where the material is saturated with water as is the case in all subaqueous tunneling it is necessary to use compressed air in connection with the shield. The intensity of air pressure is determined by the depth of the tunnel below the surface of the water above it. The tunnelers work in what are called caissons to which they have access through an air lock. In many cases quick transition from the compressed air in the caisson to the open air at the surface results fatally to the workers. The caisson disease is popularly called "the bends" a kind of paralysis which is more or less baffling to medical science. Some men are able to bear a greater pressure than others. It depends on the natural stamina of the worker and his state of health. The further down the greater the pressure. The normal atmospheric pressure at the surface is about fourteen pounds to the square inch. Men in normal health should be able to stand a pressure of seventy-six pounds to the square inch and this would call for a depth of 178 feet under water surface, which far exceeds any depth worked under compressed air. For a long time one hundred feet were regarded as a maximum depth and at that depth men were not permitted to work more than an hour in one shift. The ordinary subaqueous tunnel pressure is about forty-five pounds and this corresponds to a head of 104 feet. In working in the Hudson Tunnels the pressure was scarcely ever above thirty-three pounds, yet many suffered from the "bends." What is called a freezing method is now proposed to overcome the water in soft earth tunneling. Its chief feature is the excavating first of a small central tunnel to be used as a refrigerating chamber or ice box in freezing the surrounding material solid so that it can be dug |
|


