Scientific American Supplement, No. 363, December 16, 1882 by Various
page 42 of 145 (28%)
page 42 of 145 (28%)
![]() | ![]() |
|
These figures hold substantially for fresh as well as for sea water, for the sulphate of lime becomes wholly insoluble in sea water, or in soft water, at temperatures comprised between 280 deg. and 300 deg. Fahr. It appears from this that it is simply necessary to heat water up to a temperature of 250 deg. in order to effect the precipitation of four fifths of the sulphate of lime it may have contained, or to the temperature of 290 deg. in order to precipitate it entirely. The bearing of these facts on the purification of feed-waters will appear further on. The explanation offered to account for the gradually increasing insolubility of sulphate of lime on heating, is, that the hydrate, in which condition it exists in solution, is partially decomposed, anhydrous calcic sulphate being formed, the dehydration becoming more and more complete as the temperature rises. Sulphate of magnesia, chloride of sodium (common salt), and all the other more soluble salts contained in natural waters are likewise precipitated by the process of supersaturation, but owing to their extreme solubility their precipitation will never be effected in boilers; all mechanically suspended matter tends naturally to subside. Where water containing such mineral and suspended matter is fed to a steam boiler, there results a combined deposit, of which the carbonate of lime usually forms the greater part, and which remains more or less firmly adherent to the inner surfaces of the boiler, undisturbed by the force of the boiling currents. Gradually accumulating, it becomes harder and thicker, and, if permitted to accumulate, may at length attain such thickness as to prevent the proper heating of the water by any fire that may be maintained in the furnace. Dr. Joseph G. Rogers, who has made boiler waters and incrustations a subject of careful study, declares |
|